The Feasibility and Utility of Harnessing Digital Health to Understand Clinical Trajectories in Medication Treatment for Opioid Use Disorder: D-TECT Study Design and Methodological Considerations

Picture of Lisa A. Marsch
Lisa A. Marsch
Picture of Ching-Hua Chen
Ching-Hua Chen
Picture of Sara R. Adams
Sara R. Adams
Picture of Asma Asyyed
Asma Asyyed
Picture of Monique B. Does
Monique B. Does
Picture of Saeed Hassanpour
Saeed Hassanpour
Picture of Emily Hichborn
Emily Hichborn
Picture of Melanie Jackson-Morris
Melanie Jackson-Morris
Picture of Nicholas C. Jacobson
Nicholas C. Jacobson
Picture of Heather K. Jones
Heather K. Jones
Picture of David Kotz
David Kotz
Picture of Chantal A. Lambert-Harris
Chantal A. Lambert-Harris
Picture of Zhiguo Li
Zhiguo Li
Picture of Bethany McLeman
Bethany McLeman
Picture of Catherine Stanger
Catherine Stanger
Picture of Geetha Subramaniam
Geetha Subramaniam
Picture of Weiyi Wu
Weiyi Wu
Picture of Cynthia I. Campbell
Cynthia I. Campbell
Published at Frontiers in Psychiatry 2022


Introduction: Across the U.S., the prevalence of opioid use disorder (OUD) and the rates of opioid overdoses have risen precipitously in recent years. Several effective medications for OUD (MOUD) exist and have been shown to be life-saving. A large volume of research has identified a confluence of factors that predict attrition and continued substance use during substance use disorder treatment. However, much of this literature has examined a small set of potential moderators or mediators of outcomes in MOUD treatment and may lead to over-simplified accounts of treatment non-adherence. Digital health methodologies offer great promise for capturing intensive, longitudinal ecologically-valid data from individuals in MOUD treatment to extend our understanding of factors that impact treatment engagement and outcomes.

Methods: This paper describes the protocol (including the study design and methodological considerations) from a novel study supported by the National Drug Abuse Treatment Clinical Trials Network at the National Institute on Drug Abuse (NIDA). This study (D-TECT) primarily seeks to evaluate the feasibility of collecting ecological momentary assessment (EMA), smartphone and smartwatch sensor data, and social media data among patients in outpatient MOUD treatment. It secondarily seeks to examine the utility of EMA, digital sensing, and social media data (separately and compared to one another) in predicting MOUD treatment retention, opioid use events, and medication adherence [as captured in electronic health records (EHR) and EMA data]. To our knowledge, this is the first project to include all three sources of digitally derived data (EMA, digital sensing, and social media) in understanding the clinical trajectories of patients in MOUD treatment. These multiple data streams will allow us to understand the relative and combined utility of collecting digital data from these diverse data sources. The inclusion of EHR data allows us to focus on the utility of digital health data in predicting objectively measured clinical outcomes.

Discussion: Results may be useful in elucidating novel relations between digital data sources and OUD treatment outcomes. It may also inform approaches to enhancing outcomes measurement in clinical trials by allowing for the assessment of dynamic interactions between individuals' daily lives and their MOUD treatment response.

Clinical Trial Registration: Identifier: NCT04535583.